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by the rotationally non-invariant quantum states such as the GHZ
states and the Hardy state—and in fact those predicted by ALL
quantum states—can be reproduced exactly in a purely classical,
local-realistic manner [7][8][19]. Thus, contrary to the widespread
belief, the correlations exhibited by such states are not irreducible
quantum effects, but purely local-realistic, topological effects [3][6][8].
Needless to say, this vindicates Einstein’s suspicion that quantum
state merely describes statistical ensemble of physical systems, and
not the individual physical system. It is this inevitable conclusion
that Weatherall is resisting.

A.3.3 Another Explicit Simulation of the Model

As mentioned in the caption under Fig. 9.4, Michel Fodje has built
another explicit, event-by-event simulation of the model discussed
above that is worth elaborating on. While the simulation by Chantal
Roth is based on the joint probability density function |C(a, b; eo)|
defined in (A.9.27), the simulation by Michel Fodje is based on the
individual probability density functions |C(a; eo)| and |C(b; eo)|. We
saw in footnote 1 on pages 242 and 243 that the individual probability
density functions p(a; eo, λ) = | cos( ηaλeo

)| satisfy the relation
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)| dΩ =
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2
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=
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2
(A.9.45)

with respect to any fixed vector a. This suggests that the constraints

| cos( ηaeo
)| ≥ 1

2
sin2( θo ) ≤ | cos( ηbeo

)| (A.9.46)

for arbitrary angles ηaeo
∈ [0, 2π) and ηbeo

∈ [0, 2π) should play a
crucial role in dictating the strength of the correlation between the
results A (a; eo, θo) and B(b; eo, θo) for a given angle θo ∈ [0, π/2].
According to this constraint the probability densities | cos( ηaeo

)| and
| cos( ηbeo

)| for observing the measurement results A (a; eo, θo) and
B(b; eo, θo) depend on the common angle θo, just as they depend on
the common vector eo [9]. This in turn suggests that we may treat
θo ∈ [0, π/2] as an additional random parameter, and take the set

Λ :=

{
(eo, θo)

∣∣∣∣ | cos( ηxeo
)| ≥ 1

2
sin2( θo ) ∀ x ∈ IR3

}
(A.9.47)

as a set of initial or complete states of our physical system [9]. Given
one such state, the outcomes of measurements are deterministically
determined by the topological constraints within the 3-sphere. From
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Figure 9.7: Another explicit simulation of the correlation between
simultaneously occurring measurement events A = ±1 and B = ±1
within a parallelized 3-sphere. The code for this simulation is written
by Michel Fodje, in Python. Along with other relevant information,
it can be downloaded from https://github.com/minkwe/epr-simple/.

a geometrical point of view, the parameter θo links two disconnected
“sections” of S3 (i.e., two “orthogonal” 2-spheres within S3) defined
by the bivectors I · a and I · b, by means of the constraints (A.9.46).

With these considerations, we define the measurement functions
as

A (a; eo, θo) = sign{− cos( ηaeo
)}, for a given θo ∈ [0, π/2] ,

(A.9.48)
and

B(b; eo, θo) = sign{+ cos( ηbeo
)}, for a given θo ∈ [0, π/2] ,

(A.9.49)
where the vectors a and b are specific instances of the vector x. For
θo = 0 this prescription reduces to that of Bell’s own local model [9].

Once again let me stress the obvious that these functions define
manifestly local measurement results. What is more, given the initial
state (eo, θo), the local outcomes A (a; eo, θo) and B(b; eo, θo) are
deterministically and ontologically determined to be either +1 or −1,

254



for any freely chosen vectors a and b, where eo is a random vector
on S2 as defined before, and θo is a random angle, chosen from the
interval [0, π/2]. The correlation is then calculated quite simply as

E(a, b) = lim
n≫ 1

[
1

n

n∑

i=1

A (a; eio, θ
i
o) B(b; eio, θ

i
o)

]
= −a · b .

(A.9.50)

For the measurement functions defined in (A.9.48) and (A.9.49),
the probabilities of observing the specific outcomes +1 or −1 turn
out to be exactly 1/2, with 100% detector efficiency. In other words,
every particle that emerges in a state (eo, θo) ends up being detected
by the detector, just as in the previous simulation. On the other
hand, the probabilities of jointly observing the results A (a; eo, θo)
and B(b; eo, θo) turn out to be exactly those predicted by quantum
mechanics [cf. Eqs. (A.9.37) to (A.9.40)]. Consequently, not only the
correlations between the results turn out to be those predicted by
quantum mechanics [cf. Eq. (A.9.41)], but also the Clauser-Horne
inequality is necessarily violated in this simulation [cf. Eq. (A.9.44)].

It is important to recognize that the strength of the correlation
exhibited in this simulation does not stem from exploiting any known
or unknown loopholes—such as the detection loophole. Needless to
say, a measurement event cannot occur if there does not exist a state
that can bring about that event. If there are no clouds in the sky in
the first place, then there can be no rain, no matter where one goes.
As we noted, the state of the spin system is specified by the pair
(eo, θo) defined by the set (A.9.47)—not just by eo. In other words,
the initial distribution of the physical states is defined by the set

Λ :=

{
(eo, θo)

∣∣∣∣ | cos( ηxeo
)| ≥ 1

2
sin2( θo ) ∀ x ∈ IR3

}
, (A.9.51)

which reduces to that of Bell’s local model [9] for θo = 0 = constant.
Accordingly, since there are no states of the physical system for which
| cos( ηxeo

)| < 1
2 sin2( θo ) holds true for any x, a measurement event

cannot possibly occur for | cos( ηxeo
)| < 1

2 sin2( θo ), no matter what
x is [9]. If x happens to be equal to b, for example, then there is no
reason for the detector at b to click when | cos( ηbeo

)| < 1
2 sin2( θo ),

even for the non-vanishing random angles θo in the interval [0, π/2].

Independently of this physical picture, it is also instructive to
view the simulation purely from the perspective of computability.
From this perspective the correlation is calculated as follows: Alice
freely chooses a vector a on S2. She is then given four scalar numbers,

(θo, e
x
o , e

y
o , e

z
o) , (A.9.52)
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Figure 9.8: The measurement results A (a; eo, θo) and B(b; eo, θo)
are deterministically brought about by the common cause (eo, θo).

or a pair (eo, θo), represented by a randomly chosen vector eo on S
2

and a randomly chosen scalar θo from the interval [0, π/2]. Similarly,
Bob freely chooses a vector b on S2, and is also given the same four
scalar numbers (eo, θo). Using these scalars Alice and Bob compute
the numbers A (a; eo, θo) and B(b; eo, θo), respectively, as follows:

A (a; eo, θo) =

{
sign{− cos( ηaeo

)} if | cos( ηaeo
)| ≥ 1

2 sin2( θo )

0 if | cos( ηaeo
)| < 1

2 sin2( θo )

(A.9.53)

and

B(b; eo, θo) =

{
sign{+cos( ηbeo

)} if | cos( ηbeo
)| ≥ 1

2 sin2( θo )

0 if | cos( ηbeo
)| < 1

2 sin2( θo ).

(A.9.54)

This prescription simply partitions the outcomes A (a; eo, θo) and
B(b; eo, θo) into three sets of numbers, +1, −1, and 0, which are
then summed over the full ranges of the possible vectors eo and
possible scalars θo, giving the vanishing local averages:

lim
n≫ 1

[
1

n

n∑

i=1

A (a; eio, θ
i
o)

]
= 0 = lim

n≫ 1

[
1

n

n∑

i=1

B(b; eio, θ
i
o)

]
,

(A.9.55)

where n is the total number of non-vanishing outcomes in the sets.

Alice and Bob then multiply the outcomes A (a; eo, θo) and
B(b; eo, θo) for each pair (eo, θo), add all of the products together,
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and divide the sum by the total number of non-vanishing products
(i.e., “coincidences”) they have added. The result is the correlation

E(a, b) = lim
n≫ 1

[
1

n

n∑

i=1

A (a; eio, θ
i
o) B(b; eio, θ

i
o)

]
= −a · b .

(A.9.56)

Thus, regardless of the interpretation given to numbers A (a; eo, θo)
and B(b; eo, θo), we have arrived at a refutation of Bell’s theorem4.

A.3.4 Exploring the World Beyond the Quantum World

It turns out that the simulation discussed above can be generalized
to generate correlations of any strength—from the weakest possible
(Bell’s model) to the strongest possible (the box model), provided
the distribution of the complete states is generalized from (A.9.51) to

Λ :=

{
(eo, θo, lo)

∣∣∣∣ | cos( ηxeo
)| ≥ lo sin2( θo ) ∀ x ∈ IR3

}
,

(A.9.57)
with the scalar lo ∈ [0, 1] being an additional, non-random common
cause [cf. Fig. 9.9]. The two measurement functions are then given by

A (a; eo, θo, lo) = sign{− cos( ηaeo
)}, for a given pair (θo, lo) ,

(A.9.58)
and

B(b; eo, θo, lo) = sign{+ cos( ηbeo
)}, for a given pair (θo, lo) ,

(A.9.59)
where the freely chosen vectors a and b are specific instances of the
vector x, just as before. The correlation between the measurement
results A (a; eo, θo, lo) and B(b; eo, θo, lo) can then be determined
as usual by computing the expectation value of their scalar product:

E(a, b) = lim
n≫ 1

[
1

n

n∑

i=1

A (a; eio, θ
i
o, l

i
o) B(b; eio, θ

i
o, l

i
o)

]
. (A.9.60)

4 The original simulation by Michel Fodje confirming the above results has been
translated by John Reed from Python to Mathematica. It can be found in PDF
format at this page: http://libertesphilosophica.info/Minkwe Sim J Reed.pdf.
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Figure 9.9: The measurement results A (a; eo, θo) and B(b; eo, θo)
are deterministically brought about by the initial state (eo, θo, lo).

Special Case (1): Weakest Possible Correlation—Bell’s Model:

If we now fix either θo = 0 or lo = 0 (or both = 0) in the distribution
(A.9.57), for all eo, it reduces to that of Bell’s own local model [9],

Λ =

{
(eo, θo = 0 or lo = 0)

∣∣∣∣ | cos( ηxeo
)| ≥ 0 ∀ x ∈ IR3

}
,

(A.9.61)
generating the weakest possible (or “classical”) correlation:

E(a, b) =





− 1 + 2
π
ηab if 0 ≤ ηab ≤ π

+3 − 2
π
ηab if π ≤ ηab ≤ 2π .

(A.9.62)

Special Case (2): Strongest Possible Correlation—the Box Model:

On the other hand, if we fix θo = π/2 and lo = 1 in the distribution
(A.9.57), again for all eo, it reduces to that of the “box” model,

Λ =

{
(eo, θo = π/2, lo = 1)

∣∣∣∣ | cos( ηxeo
)| ≥ 1 ∀ x ∈ IR3

}
,

(A.9.63)
generating the strongest possible (albeit unphysical) correlation:

E(a, b) =





− 1 if 0 ≤ ηab < π/2 or 3π/2 < ηab ≤ 2π

+1 if π/2 < ηab < 3π/2 .

(A.9.64)
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Special Case (3): “Quantum” Correlation—the 3-Sphere Model:

Finally, if we set lo = 1/2 in the distribution (A.9.57), again for all
eo, but keep θo random, then we are led back to the distribution

Λ =

{(
eo, θo, lo =

1

2

) ∣∣∣∣ | cos( ηxeo
)| ≥ 1

2
sin2( θo ) ∀ x ∈ IR3

}
,

(A.9.65)
generating the “quantum” correlation discussed above. Thus, if we
view lo = 1/2 as the average of the extremes lo = 0 and lo = 1, then
the key feature that generates precisely the quantum correlation is
the randomness of θo, channeled through the geometrical constraint

| cos( ηxeo
)| ≥ 1

2
sin2( θo ) ∀ x ∈ IR3. (A.9.66)

A.3.5 Elegant, Powerful, and Succinct Calculation of the
Correlation

The above simulations once again confirm the fact that EPR-Bohm
correlations are local-realistic correlations among the binary points of
a parallelized 3-sphere [6]. As we saw in section 9.2, however, this fact
can be expressed more elegantly by understanding how random errors
propagate within a parallelized 3-sphere. In particular, we saw that
EPR-Bohm correlations can be derived by recognizing that the raw
scores A (a, λ) and B(b, λ) are generated within S3 with different
bivectorial scales of dispersion, and hence the correct correlation
between them can be determined only by calculating the covariation
of the corresponding standardized variables L(a, λ) and L(b, λ):

E(a, b) = lim
n≫ 1

[
1

n

n∑

i=1

A (a, λi) B(b, λi)

]

= lim
n≫ 1

[
1

n

n∑

i=1

L(a, λi)L(b, λi)

]

= −a · b , (A.9.67)

where

L(a, λi)L(b, λi) ≡ −a · b − L(a× b, λi)

≡ −a · b − λiD(a× b), (A.9.68)

and the standardized variables are defined as

L(a, λ) :=
q(ψ, a, λ) − m(q)

σ[q(ψ, a, λ)]
=

A (a, λ) − m(A )

σ[A (a, λ)]
. (A.9.69)
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