Disproof of Bell's Theorem

Illuminating the Illusion of Entanglement

Second Edition

Joy Christian

Appendix 9: Simulation of EPR-Bohm Correlation

Figure 9.1: The measurement results $\mathscr{A}\left(\mathbf{a} ; \mathbf{e}_{o}, \theta_{o}\right)$ and $\mathscr{B}\left(\mathbf{b} ; \mathbf{e}_{o}, \theta_{o}\right)$ are deterministically brought about by the common cause $\left(\mathbf{e}_{o}, \theta_{o}\right)$.

The set of complete states $\left(\mathbf{e}_{o}, \theta_{o}\right)$ of the system is defined by

$$
\begin{equation*}
\Lambda:=\left\{\left(\mathbf{e}_{o}, \theta_{o}\right)| | \cos \left(\eta_{\mathbf{x e}_{o}}\right) \left\lvert\, \geq \frac{1}{2} \sin ^{2}\left(\theta_{o}\right) \quad \forall \mathbf{x} \in T_{p} S^{3}\right.\right\} \tag{A.9.1}
\end{equation*}
$$

where $\mathbf{e}_{o} \in \mathbb{R}^{3}$ is a random vector, $\theta_{o} \in[0, \pi / 2]$ is a random scalar, and each vector \mathbf{x} specifies a different 2 -sphere within the 3 -sphere. Note that there exist no states for which $\left|\cos \left(\eta_{\mathbf{x e}_{o}}\right)\right|<\frac{1}{2} \sin ^{2}\left(\theta_{o}\right)$ for any $\mathbf{x} \in T_{p} S^{3}$. The two measurement results are then defined by $\mathscr{A}\left(\mathbf{a} ; \mathbf{e}_{o}, \theta_{o}\right)=\left\{\begin{array}{cl}\operatorname{sign}\left\{-\cos \left(\eta_{\mathbf{a e}_{o}}\right)\right\} & \text { if }\left|\cos \left(\eta_{\mathbf{a e}_{o}}\right)\right| \geq \frac{1}{2} \sin ^{2}\left(\theta_{o}\right) \\ 0 & \text { if }\left|\cos \left(\eta_{\mathbf{a e}_{o}}\right)\right|<\frac{1}{2} \sin ^{2}\left(\theta_{o}\right)\end{array}\right.$ and
$\mathscr{B}\left(\mathbf{b} ; \mathbf{e}_{o}, \theta_{o}\right)=\left\{\begin{array}{cl}\operatorname{sign}\left\{+\cos \left(\eta_{\mathbf{b e}_{o}}\right)\right\} & \text { if }\left|\cos \left(\eta_{\mathbf{b e}_{o}}\right)\right| \geq \frac{1}{2} \sin ^{2}\left(\theta_{o}\right) \\ 0 & \text { if }\left|\cos \left(\eta_{\mathbf{b e}_{o}}\right)\right|<\frac{1}{2} \sin ^{2}\left(\theta_{o}\right),\end{array}\right.$
with freely chosen \mathbf{a} and \mathbf{b}. Evidently, the averages of the results \mathscr{A} and \mathscr{B} vanish, but the probabilities of their joint detections do not:

$$
\begin{align*}
& P^{++}=P\left\{\mathscr{A}=+1, \mathscr{B}=+1 \mid \eta_{\mathbf{a b}}\right\}=\frac{1}{2} \sin ^{2}\left(\frac{\eta_{\mathbf{a b}}}{2}\right) \tag{A.9.4}\\
& P^{--}=P\left\{\mathscr{A}=-1, \mathscr{B}=-1 \mid \eta_{\mathbf{a b}}\right\}=\frac{1}{2} \sin ^{2}\left(\frac{\eta_{\mathbf{a b}}}{2}\right) \tag{A.9.5}\\
& P^{-+}=P\left\{\mathscr{A}=-1, \mathscr{B}=+1 \mid \eta_{\mathbf{a b}}\right\}=\frac{1}{2} \cos ^{2}\left(\frac{\eta_{\mathbf{a b}}}{2}\right) \tag{A.9.6}\\
& P^{+-}=P\left\{\mathscr{A}=+1, \mathscr{B}=-1 \mid \eta_{\mathbf{a b}}\right\}=\frac{1}{2} \cos ^{2}\left(\frac{\eta_{\mathbf{a b}}}{2}\right) \tag{A.9.7}
\end{align*}
$$

Figure 9.2: An event-by-event simulation of the correlation between simultaneously occurring measurement events $\mathscr{A}= \pm 1$ and $\mathscr{B}= \pm 1$ within a parallelized 3-sphere. The code for this simulation is written by Michel Fodje, in Python. Along with other relevant information, it can be downloaded from https://github.com/minkwe/epr-simple/.

From these joint probabilities (which are exactly those predicted by quantum mechanics) the correlation can now be computed as follows:

$$
\begin{align*}
\mathcal{E}(\mathbf{a}, \mathbf{b})= & \lim _{n \gg 1}\left[\frac{1}{n} \sum_{i=1}^{n} \mathscr{A}\left(\mathbf{a} ; \mathbf{e}_{o}^{i}, \theta_{o}^{i}\right) \mathscr{B}\left(\mathbf{b} ; \mathbf{e}_{o}^{i}, \theta_{o}^{i}\right)\right] \\
= & \frac{P^{++}+P^{--}-P^{-+}-P^{+-}}{P^{++}}+P^{--}+P^{-+}+P^{+-} \\
= & \frac{1}{2} \sin ^{2}\left(\frac{\eta_{\mathbf{a b}}}{2}\right)+\frac{1}{2} \sin ^{2}\left(\frac{\eta_{\mathbf{a b}}}{2}\right) \\
& \quad-\frac{1}{2} \cos ^{2}\left(\frac{\eta_{\mathbf{a b}}}{2}\right)-\frac{1}{2} \cos ^{2}\left(\frac{\eta_{\mathbf{a b}}}{2}\right) \\
= & -\cos \eta_{\mathbf{a b}} . \tag{A.9.8}
\end{align*}
$$

These are then the strong correlations predicted by our local model ${ }^{1}$.

[^0]
[^0]: ${ }^{1}$ The original simulation by Michel Fodje confirming the above results has been translated by John Reed from Python to Mathematica. It can be found in PDF format at this page: http://libertesphilosophica.info/Minkwe_Sim_J_Reed.pdf.

