Complete State from the Triangle Inequality for Quaternions:

Joy Christian

Recall that a parallelized 3 -sphere, S^{3} [or the group $\mathrm{SU}(2)$], is a set of unit quaternions, defined as

$$
\begin{equation*}
S^{3}:=\left\{\mathbf{q}\left(\phi_{o}, I \cdot \mathbf{v}_{o}\right):=\exp \left[\left(I \cdot \mathbf{v}_{o}\right) \phi_{o}\right] \mid\left\|\mathbf{q}\left(\phi_{o}, I \cdot \mathbf{v}_{o}\right)\right\|=1\right\} \tag{1}
\end{equation*}
$$

where $I \cdot \mathbf{v}_{o}$ is an initial bivector rotating about $\mathbf{v}_{o} \in \mathbb{R}^{3}$ and ϕ_{o} is half of its initial rotation angle. Using the notation of geometric product, $\mathbf{a b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}$, consider now two quaternions within a 3 -sphere, say $\mathbf{p}_{o}\left(\eta_{\mathbf{n e}_{o}}, \mathbf{n} \wedge \mathbf{e}_{o}\right)$ and $\mathbf{q}_{o}\left(\eta_{\mathbf{z s}_{o}}, \mathbf{z} \wedge \mathbf{s}_{o}\right)$, with \mathbf{z} as a fixed reference vector, defined by

$$
\begin{align*}
\mathbf{p}_{o}\left(\eta_{\mathbf{n e}_{o}}, \mathbf{n} \wedge \mathbf{e}_{o}\right) & :=\cos \left(\eta_{\mathbf{n e}_{o}}\right)+\frac{\mathbf{n} \wedge \mathbf{e}_{o}}{\left\|\mathbf{n} \wedge \mathbf{e}_{o}\right\|} \sin \left(\eta_{\mathbf{n e}_{o}}\right) \tag{2}\\
\text { and } \quad \mathbf{q}_{o}\left(\eta_{\mathbf{z s}_{o}}, \mathbf{z} \wedge \mathbf{s}_{o}\right) & :=\cos \left(\eta_{\mathbf{z s}_{o}}\right)+\frac{\mathbf{z} \wedge \mathbf{s}_{o}}{\left\|\mathbf{z} \wedge \mathbf{s}_{o}\right\|} \sin \left(\eta_{\mathbf{z s}_{o}}\right) . \tag{3}
\end{align*}
$$

Note that, although \mathbf{p}_{o} and \mathbf{q}_{o} are normalized to unity, their sum $\mathbf{p}_{o}+\mathbf{q}_{o}$ need not be. In fact, from the triangle inequality (which holds for any arbitrary pair of quaternions) we have the inequality

$$
\begin{equation*}
\left\|\mathbf{p}_{o}\right\|+\left\|\mathbf{q}_{o}\right\| \geq\left\|\mathbf{p}_{o}+\mathbf{q}_{o}\right\| \tag{4}
\end{equation*}
$$

Multiplying with $\left\|\mathbf{p}_{o}\right\|=1$ on both sides, and simplifying a bit, reduces this triangle inequality to

$$
\begin{equation*}
\left\|\mathbf{p}_{o}\right\|^{2} \geq\left\|\mathbf{p}_{o}+\mathbf{q}_{o}\right\|-1 \tag{5}
\end{equation*}
$$

This inequality allows us to make the following choice for the set of complete states for our system:

$$
\begin{equation*}
\Lambda:=\left\{\left(\mathbf{p}_{o}, \mathbf{q}_{o}\right) \mid\left\|\mathbf{p}_{o}+\mathbf{q}_{o}\right\|=1+\sin ^{2}\left(\eta_{\mathbf{n e}_{o}}\right)+f^{2}\left(\eta_{\mathbf{z s}_{o}}\right) \quad \forall \mathbf{n} \in T_{p} S^{3}\right\} \tag{6}
\end{equation*}
$$

where $f\left(\eta_{\mathbf{z s}_{o}}\right)$ is an arbitrary function of $\eta_{\mathbf{z s}_{o}}$, which, as we shall soon see, satisfies the condition

$$
\begin{equation*}
f\left(\eta_{\mathbf{z s}_{o}}\right) \leq\left|\cos \left(\eta_{\mathbf{n e}_{o}}\right)\right| . \tag{7}
\end{equation*}
$$

Thus the choice (6) respects the condition $\left\|\mathbf{p}_{o}+\mathbf{q}_{o}\right\| \leq 2$ following from Eq. (4). Substituting for

$$
\begin{equation*}
\left\|\mathbf{p}_{o}\right\|^{2}=\cos ^{2}\left(\eta_{\mathbf{n e}_{o}}\right)+\sin ^{2}\left(\eta_{\mathbf{n e}_{o}}\right) \tag{8}
\end{equation*}
$$

from Eq. (2), and for $\left\|\mathbf{p}_{o}+\mathbf{q}_{o}\right\|$, with $f\left(\eta_{\mathbf{z s}_{o}}\right)=-1+\frac{2}{\sqrt{1+3\left(\frac{\eta_{\mathbf{z s}}}{\pi}\right)}}$ from Eq. (6), into Eq. (5) leads to

$$
\begin{equation*}
\left|\cos \left(\eta_{\mathbf{n e}_{o}}\right)\right| \geq-1+\frac{2}{\sqrt{1+3\left(\frac{\eta_{\mathbf{z s}}}{\pi}\right)}} \tag{9}
\end{equation*}
$$

Without loss of generality we can now identify $\mathbf{e}_{o} \in \mathbb{R}^{3}$ as a random vector and $\eta_{\mathbf{z s}_{o}} \equiv \eta_{o} \in[0, \pi]$ as a random scalar. This finally allows us to rewrite the set (6) of complete states of the system as

$$
\begin{equation*}
\Lambda:=\left\{\left(\mathbf{p}_{o}, \mathbf{q}_{o}\right)| | \cos \left(\eta_{\mathbf{n e}_{o}}\right) \left\lvert\, \geq-1+\frac{2}{\sqrt{1+3\left(\frac{\eta_{\mathbf{z}} \mathbf{s}_{o}}{\pi}\right)}} \quad \forall \mathbf{n} \in T_{p} S^{3}\right.\right\} \tag{10}
\end{equation*}
$$

which, for $\mathbf{n}=\mathbf{a}$, corresponds to measurement results of the form

$$
\begin{equation*}
\pm 1=\mathscr{A}\left(\mathbf{a} ; \mathbf{e}_{o}, \mathbf{s}_{o}\right): \mathbb{R}^{3} \times \Lambda \longrightarrow S^{3} \sim \mathrm{SU}(2) \tag{11}
\end{equation*}
$$

such that

$$
S^{3} \ni \pm 1=\mathscr{A}\left(\mathbf{a} ; \mathbf{e}_{o}, \mathbf{s}_{o}\right)=\left\{\begin{array}{cl}
\operatorname{sign}\left\{-\cos \left(\eta_{\mathbf{a e}_{o}}\right)\right\} & \text { if }\left|\cos \left(\eta_{\mathbf{a e}_{o}}\right)\right| \geq-1+\frac{2}{\sqrt{1+3\left(\frac{\eta_{\mathbf{z}} \mathbf{s e}_{o}}{\pi}\right)}} \tag{12}\\
0 & \text { if }\left|\cos \left(\eta_{\mathbf{a e}_{o}}\right)\right|<-1+\frac{2}{\sqrt{1+3\left(\frac{\eta_{\mathbf{z}} \mathbf{s e}_{o}}{\pi}\right)}}
\end{array}\right.
$$

